Agresti, A. (2001). Exact inference for categorical data: recent advances and continuing controversies.

*Statist. Med.*,

**20**, 2709-2722.

Andersen, B. (1990)

*Methodological Errors in Medical Research.*London: Blackwell Scientific Publications.

Armitage, P., Berry, G. and Matthews, J. N. S. (2002)

*Statistical Methods in Medical Research*, 4th edn. Oxford: Blackwell.

Barnard, G. A. (1947a) Significance tests for 2 x 2 tables.

*Biometrika*,

**34**, 123-138.

Barnard, G. A. (1947b) 2 x 2 tables: A note on E. S. Pearsons paper.

*Biometrika*,

**34**, 168-169.

Barnard, G. A. (1979) In contradiction to J. Berksons dispraise: conditional tests can be more efficient.

*Journal of Statistical Planning and Inference*,

**3**, 181-187.

Barnard, G. A. (1984) Discussion on Tests of significance for 2 x 2 contingency tables (by F. Yates).

*J. R. Statist. Soc. A*,

**147**, 449-450.

Barnard, G. A. (1989) On alleged gains in power from lower P values.

*Statist. Med.*,

**8**, 1469-1477.

Berkson, J. (1978a) In dispraise of the exact test.

*Journal of Statistical Planning and Inference*,

**2**, 27-42.

Berkson, J. (1978b) Do the marginal totals of the 2 x 2 table contain relevant information respecting the table proportions?

*Journal of Statistical Planning and Inference*,

**2**, 43-44.

Berry, G. and Armitage, P. (1995) Mid-P confidence intervals: a brief review.

*Statistician*,

**44**, 417-423.

Bradley, D. R. and Cutcomb, S. (1977) Monte Carlo simulations and the chi-square test of independence.

*Behaviour Research Methods and Instrumentation*,

**9**, 193-201.

Camilli, G. (1990) The test of homogeneity for 2 x 2 contingency tables: a review of and some personal opinions on the controversy.

*Psychological Bulletin*,

**108**, 135-145.

Camilli, G. and Hopkins, J. D. (1978) Applicability of chi-square to 2 x 2 contingency tables with small expected cell frequencies.

*Psychological Bulletin*,

**85**, 163-167.

Camilli, G. and Hopkins, J. D. (1979) Testing for association in 2 x 2 contingency tables with very small sample sizes.

*Psychological Bulletin*,

**86**, 1011-1014.

Campbell, I. (2007) Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations.

*Statistics in Medicine*,

**26**, 3661 - 3675.

Cochran, W. G. (1942) The χ2 correction for continuity.

*Iowa State Coll. Jour. Sci.*,

**16**, 421-436.

Cochran, W. G. (1952) The χ

^{2}test of goodness of fit.

*Ann. Math. Statist.*,

**25**, 315-345.

Cochran, W. G. (1954) Some methods for strengthening the common χ

^{2}tests.

*Biometrics*,

**10**, 417-451.

Cormack, R. S. and Mantel, N. (1991) Fishers exact test: the marginal totals as seen from two different angles.

*Statistician*,

**40**, 27-34.

DAgostino, R. B., Chase, B. and Belanger, A. (1988) The appropriateness of some common procedures for testing the equality of two independent binomial populations.

*American Statistician*,

**42**, 198-202.

Dupont, W. D. (1986) Sensitivity of Fishers exact test to minor perturbations in 2 x 2 contingency tables

*Statist. Med.*,

**5**, 629-635.

Fisher, R. A. (1922) On the interpretation of χ

^{2}from contingency tables, and the calculation of P.

*J. R. Statist. Soc.*,

**85**, 87-94.

Fisher, R. A. (1935) The logic of inductive inference.

*J. R. Statist. Soc.*,

**98**, 39-54.

Fisher, R. A. (1945) The logical inversion of the notion of the random variable.

*Sankhya*,

**7**, 129-132.

Fisher, R. A. (1973)

*Statistical Methods and Scientific Inference*, 3rd edn. London. Collier Macmillan Publishers.

Fleiss, J. L. (1981)

*Statistical Methods for Rates and Proportions*, 2nd edn. Chichester: John Wiley & Sons.

Garside, G. R. and Mack, C. (1976) Actual Type I error probabilities for various tests in the homogeneity case of the 2 x 2 contingency table.

*American Statistician*,

**30**, 18-21.

Grizzle, J. E. (1967) Continuity correction in the χ

^{2 }-test for 2 x 2 tables.

*American Statistician*,

**21**, 28-32.

Haber, M. (1986) An exact unconditional test for the 2 x 2 comparative trial.

*Psychological Bulletin*,

**99**, 129-132.

Hill, I. D. (1988) Discussion on A new probability model for determining exact

*P*-values for 2 x 2 contingency tables when comparing binomial proportions (by W. R. Rice).

*Biometrics*,

**44**, 1-22.

Hill, I. D. and Pike, M. C. (1965) Algorithm 4: TWOBYTWO

*Computer Bulletin*,

**9**, 56-63.

Hirji, K. F., Tan, S. and Elashoff, R. M. (1991) A quasi-exact test for comparing two binomial proportions.

*Statist. Med.*,

**10**, 1137-1153.

Hwang, J. T. G. and Yang, M.-C. (2001) An optimality theory for mid

*p*-values in 2 ### UNKNOWN CHARACTER CODED BY d7 ###2 contingency tables.

*Statistica Sinica*,

**11**, 807-826.

Irwin, J. O. (1935) Tests of significance for differences between percentages based on small numbers.

*Metron*,

**12**, 83-94.

Jagger, G. (1984) Discussion on tests of significance for 2 x 2 contingency tables (by F. Yates).

*J. R. Statist. Soc. A*,

**147**, 455.

Kempthorne, O. (1979) In dispraise of the exact test: reactions

*Journal of Statistical Planning and Inference*,

**3**, 199-213.

Kurtz, T. E. (1968) A role of time-sharing computing in statistical research.

*The American Statistician*,

**22**, 19-21.

Larntz, K. (1978) Small-sample comparisons of exact levels for chi-squared goodness-of-fit statistics.

*J. Am. Statist. Ass.*

**73**, 235-245.

Little, R. J. A. (1989) Testing the equality of two independent binomial proportions.

*American Statistician*,

**43**, 283-288.

Martin Andres, A. and Herranz Tejedor, I. (2000). On the minimum expected quantity for the validity of the chi-squared test in 2 x 2 tables.

*Appl. Statist.*

**27**, 807-820.

Martin Andres, A., Sanchez Quevedo, M. J.and Silva Mato, A. (2002) Asymptotical tests in 2 x 2 comparative trials (unconditional approach).

*Computational Statistics and Data Analysis*,

**40**, 339 - 354.

Overall, J. E., Rhoades, M. and Starbuck, R. R. (1987) Small-sample tests for homogeneity of response probabilities in 2 x 2 contingency tables.

*Psychological Bulletin*,

**102**, 307-314.

Pearson, E. S. (1947) The choice of statistical tests illustrated on the interpretation of data classed in a 2 x 2 table.

*Biometrika*,

**34**, 139-167.

Pearson, K. (1900) On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.

*Philos. Mag. Series 5*,

**50**, 157-172.

Plackett, R. L. (1964) The continuity correction in 2 x 2 tables.

*Biometrika*,

**51**, 327-337.

Plackett, R. L. (1984) Discussion on Tests of significance for 2 x 2 contingency tables (by F. Yates).

*J. R. Statist. Soc. A*,

**147**, 458.

Rhoades, H. M. and Overall, J. E. (1982) A sample size correction for Pearson chi-square in 2 x 2 contingency tables.

*Psychological Bulletin*,

**91**, 418-423.

Rice, W. R. (1988) A new probability model for determining exact

*P*-values for 2 x 2 contingency tables when comparing binomial proportions.

*Biometrics*,

**44**, 1-22.

Richardson, J. T. E. (1990) Variants of chi-square for 2 x 2 contingency tables.

*British Journal of Mathematical and Statistical Psychology*,

**43**, 309-326.

Richardson, J. T. E. (1994) The analysis of 2 x 1 and 2 x 2 contingency tables: a historical review

*Statistical Methods in Medical Research*,

**3**, 107-134.

Roscoe, J. T. and Byars, J. A. (1971) An investigation of the restraints with respect to sample size commonly imposed on the use of the chi-square statistic.

*J. Am. Statist. Ass.*,

**66**, 755-759.

Sahai, H. and Khurshid, A. (1995) On analysis of epidemiological data involving a 2 x 2 contingency table: an overview of Fishers exact test and Yates correction for continuity.

*Journal of Biopharmaceutical Statistics*,

**5**, 43-70.

Schouten, H. J. A., Molenaar, I. W., van Strik, R. and Boomsma, A. (1980) Comparing two independent binomial proportions by a modified chi square test.

*Biometrical Journal*,

**22**, 241-248.

Seneta, E. and Phipps, M. C. (2001) On the comparison of two observed frequencies.

*Biometrical Journal*,

**43**, 23-43.

Storer, B. E. and Kim, C. (1990) Exact properties of some exact test statistics for comparing two binomial proportions.

*J. Am. Statist. Ass.*,

**85**, 146-155.

Stuart, A., Ord, J. K. and Arnold, S. (1999)

*Kendalls Advanced Theory of Statistics*, Vol. 2A, 6th edn. London: Arnold.

Suissa, S. and Shuster, J. J. (1985) Exact unconditional sample sizes for the 2 x 2 binomial trial.

*J. R. Statist. Soc. A*,

**148**, 317-327.

Tocher, K. D. (1950) Extension of the Neyman-Pearson theory of tests to discontinuous variates.

*Biometrika*,

**37**, 130-144.

Upton, G. J. G. (1982). A comparison of alternative tests for the 2 x 2 comparative trial.

*J. R. Statist. Soc. A*,

**145**, 86-105.

Upton, G. J. G. (1984). Discussion on Tests of significance for 2 x 2 contingency tables (by F. Yates).

*J. R. Statist. Soc. A*,

**147**, 451-452.

Upton, G. J. G. (1992). Fishers exact test.

*J. R. Statist. Soc. A*,

**155**, 395-402.

Yates, F. (1934) Contingency tables involving small numbers and the χ

^{2}test.

*J. R. Statist. Soc. Suppl.*,

**1**, 217-235.

Yates, F. (1984). Tests of significance for 2 x 2 contingency tables (with discussion)

*J. R. Statist. Soc. A*,

**147**, 426-463.

Back to top